
Efficient way of Data Managing for Range Queries
in Unstructured Peer to Peer Networks.

P Lalitha Kumari
Dept. of CSE

ASR College Of Engg,
Tanuku,Andhrapradesh,India.

P Rama Rao
Dept. of MCA

Sri Sivani College of Engg,
Andhrapradesh,India.

Chinnam YuvaRaju

Dept. of CSE
ASR College Of Engg

Tanuku,Andhrapradesh,India

Abstract— Peer-To-Peer (P2P) networks have become very
popular in the last few years. Nowadays, they are the most
widespread approach for exchanging data among large
communities of users in the file sharing context. Efficient way
of managing storage and retrieval of multidimensional data is
achieved by proposed framework which ensures robust query
evolution. This framework is based on peer to peer network,
where large collection of Data to be stored. This data is
divided into subparts and built up an index on set of each
compressed data and this data is to be distributed across p2p
network .This compressed data supports efficient data
extraction of information .A replication mechanism provides
appropriate coverage of index and metadata by considering
network conditions and query workload .

Keywords- multidimensional data, indexing, compression and
p2p network

I. INTRODUCTION

EER-TO-PEER (P2P) networks have become very
popular in the last few years. Nowadays, they are the

most widespread approach for exchanging data among
large communities of users in the file sharing context.
In order to make participants really autonomous, they
should be imposed no constraint on storage and [1]
computational resources to be shared, as well as on the
reliability of their network connection. These requirements
make traditional distributed frameworks unsuitable and
suggest the adoption of a solution based on an unstructured
P2P network, where peers are neither responsible of
coordination tasks (such as super peers, which are called
for a certain amount of resources and reliability), nor
imposed to host specific pieces of data (as in DHT-based
networks).

Our aim is devising a P2P-based framework supporting
the analysis of multidimensional historical data.
Specifically, our efforts will be devoted to combining the
amenities of P2P networks and data compression to
provide a support for the evaluation of range queries,
possibly trading off efficiency with accuracy of answers.
[2] The framework should enable members of an
organization to cooperate by sharing their resources (both
storage and computational) to host (compressed) data and
perform aggregate queries on them, while preserving their
autonomy.
The management of compressed data on unstructured P2P
Networks is an intriguing issue, but poses several research
Challenges, which we are discuss in the following.

A. Compression
A compression technique must be devised which is able to
create “prone-to-be-distributed” data synopses supporting
the efficient evaluation of aggregates, possibly affected by
tolerable error rates [3]. However, in this case, although the
cost of disk storage is continuously and rapidly decreasing,
it may still be difficult to find peers for which hosting
replicas of synopses has a negligible cost, while autonomy
is a requirement in our setting? Using traditional
compression techniques, synopses providing reasonable
error rates may have a non-negligible size (usually not
under 1 percent of the size of the original data set, e.g., 1’’
GB from a 1’ TB data set). Although compressing the data
certainly makes replication less resource consuming,
[4]replicating the entire synopsis each time would require
storage and network resources that could be saved if only
some specific portion of the synopsis could be replicated
[2]. We recall that replication is mandatory in the P2P
setting, both to contrast the volatility of peers (which
threatens data availability) and to prevent peers
from being overloaded (in the presence of many users
interested in a data set, if the peers hosting these data were
too few, they would be required to process a large amount
of queries).
These drawbacks would be overcome if the compressed
synopsis were subdivided into tiny sub synopses which are
Independently replicated and disseminated on the network
when needed. Peers would, therefore, be asked to host
replicas of small chunks of data. This way, the autonomy
requirement would not result in a limit on the overall size
of the synopsis

B. Indexing
A better way to address this issue is to design an indexing
mechanism that supports the efficient location of the sub
synopses involved in the query evaluation. In the literature,
there are several works proposing distributed indexing
techniques, where indexes are variants of R-Trees which
are partitioned and distributed among the nodes of the
network. [1] According to these approaches, nodes of the
networks are assigned groups of nodes of the R-tree, and
maintain references to hosts which are assigned other
nodes of the R-tree. The association between hosts and R-
tree nodes is fixed and the maintenance of the index is
centralized. These solutions, as they are, were devised for
relatively static scenarios, and they are not suitable for the
dynamic scenario addressed by our proposal, where in
order to guarantee peer autonomy, peers cannot be

P

P. Lalitha Kumari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2078-2083

2078

constrained to host a certain portion of the index or to be
always connected to the network; and [1]Peers are volatile,
so the framework must be capable of promptly reacting to
peer disconnections, [5] preventing dangling references in
the index.

C. Replication
A replication scheme capable of maintaining appropriate
levels of coverage w.r.t. the evolution of user interests and
network conditions must be designed, to ensure
accessibility and robustness.
The main contributions of this paper and its organization
may be summed up as follows [6].
 a compression technique for building an indexed

aggregate structure over a multidimensional data
population, prone to be distributed, and accessed
across a P2P network ;

 a storage model which employs additional data
structures to support efficient and robust query
answering over compressed data in an unstructured
P2P network ; and

 a dynamic replication scheme capable of maintaining
appropriate levels of coverage w.r.t. the evolution of
the query workload and the network conditions with
proposal work.

II. COMPRESSION AND INDEXING DATA

This section consists of three subsections that are
partitioning, compression, and indexing.

A. Partitioning. The aim of the partitioning step is to

divide the data domain into non overlapping blocks.
These blocks will be compressed separately, yielding
distinct sub synopses. For each of them, a portion of
the amount of storage space B chosen to represent the
whole synopsis will be invested. The distribution of B
among blocks will take into account the following
requirements. B must be fairly distributed among
blocks and each block must be assigned a “small”
portion of B.
The assignment of different amounts of storage space
to the blocks for representing their sub synopses
should depend on the differences in homogeneity
among the blocks. Intuitively enough, the more
homogeneous the data inside a block, the smaller the
amount of information needed to effectively
accomplish its summarization.
 The sub synopses over the blocks are the data that
will be hosted by peers and exchanged across the P2P
network. As explained in Section 1, [1] building sub
synopses with “large” size would impose a significant
constraint on the amount of storage space which
should be made available by each peer. [7] On the
contrary, defining small-size sub synopses results in
limiting the storage and computational resources
required at each peer for storing and querying data, as
well as reducing both the download and upload traffic
needed for supporting data exchange.

Fig. 1. Partitioning a 2D data population

B. Compression. Clustering-based Histogram (CHIST)

exploits a density-based clustering algorithm to
construct a set of (possibly overlapping) blocks
covering the nonempty portions of the data domain
[8]. For each block (called bucket, according to
standard histogram terminology), its boundaries as
well as some aggregate value summarizing its data are
stored. In our current implementation, each bucket is
associated with the result of evaluating the sum
aggregate operator. This way, the summary data
suffice to estimate range sum queries.

C. Indexing. At this step, an index is built on top of the
sub synopses resulting from the compression step.
This index will be exploited for locating the data
involved in the queries across the network. [9] The
aggregate R-tree indexing the sub synopses will be
denoted as I.

Fig.2. Partitioning the R-tree.

D. Partitioning the Index

After being populated, I is partitioned in “small”-size
portions which are prone to be distributed across the
network.
The reason for partitioning the index is the same as for
limiting the amount of storage space invested for a
single synopsis, that is, distributing small-size index
portions across the network prevents peers from being
overloaded in terms of upload and download traffic
needed for supporting index replication.

P. Lalitha Kumari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2078-2083

2079

III. PROPOSED METHOD

Fig 3 . proposed method flowchart

Our aim is devising a P2P-based framework

supporting the analysis of multidimensional historical data.
Specifically, our efforts will be devoted to combining the
amenities of P2P networks and data compression to
provide a support for the evaluation of range queries,
possibly trading off efficiency with accuracy of answers.
[1] The framework should enable members of an
organization to cooperate by sharing their resources (both
storage and computational) to host (compressed) data and
perform aggregate queries on them, while preserving their
autonomy.

A framework with these characteristics can be
useful in different application contexts. For instance,
consider the case of a worldwide virtual organization with
users interested in geographical data, as well as the case of
a real organization
on an enterprise network. In both cases, even users who are
not continuously interested in performing data analysis can

make a part of their resources available for supporting
analysis tasks needed by others, if their own capability of
performing local tasks is preserved. [10] This is analogous
to the idea on which several popular applications for public
resource computing are based. For instance, within the
project SETI@home [39], members of a worldwide
community offer their CPU, when it is idle, to analyze
radio telescope readings in search of nonrandom patterns,
such as spikes in power spectra. In order to make
participants really autonomous, they should be imposed no
constraint on storage and computational resources to be
shared, as well as on the reliability of their network
connection. These requirements make traditional
distributed frameworks unsuitable and suggest the adoption
of a solution based on an unstructured P2P network, where
peers are neither responsible of coordination tasks (such as
super peers, which are called for a certain amount of
resources and reliability), nor imposed to host specific
pieces of data (as in DHT-based networks).
PEER-TO-PEER (P2P) networks have become very
popular in
the last few years. Nowadays, they are the most
widespread approach for exchanging data among large
communities of users in the file sharing context
specifically, no P2P-based solution has imposed itself as an
effective evolution of traditional distributed databases.
[11]This is quite surprising, as the huge amount of
resources provided by P2P networks (in terms of storage
capacity, computing power, and data transmission
capability) could effectively support data management.
Our aim is devising a P2P-based framework supporting the
analysis of multidimensional historical data. The
multidimensional data is stored in peer so that it can be
shared in the network, for that built the synopses.
The synopsis is built in three steps
 1. Partition 2. Compressing and 3.Indexing.
The aim of the partitioning step is to divide the data
domain into non overlapping blocks. [12] These blocks
will be compressed
separately, yielding distinct sub synopses.
 An index is built on top of the sub synopses resulting
from the compression step Index and these sub synopses
are distributed across the network .Queries can be posed
against the data. The queries can be any explorative or
range queries. One of the first works dealing with the
problem of supporting range queries in a peer-to-peer
network is where data are ordered according to Hilbert
curves, and then, distributed among the peers.

As seen in Section 2, the compression and indexing
processes result in a synopsis organized into sub synopses,
and a fragmented aggregate R-Tree over them. We now
describe how the distribution of the synopsis and the index
are performed.

A. System Primitives and Data Structures .
We assume the existence of two system primitives named
search and send. Primitive search(N)—which is used by
the
framework every time it is required to find sets of peers on
the network—returns a set of N IP addresses of randomly
chosen peers. In order to choose a peer randomly, it
suffices to locate a peer by starting a random walk of
length rather than logf N (where N is the number of peers

P. Lalitha Kumari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2078-2083

2080

in the network and f is the average fan-out) from the peer
which invoked search. In fact, as shown in [1], a random
walk of this length makes the probability of reaching any
peer converge to a stationary distribution, which is uniform
if the network graph is well connected. In our prototype,
we set the length of the random walk to 1’. This allows us
to randomly select peers from a network of up to 41’ peers
even in the pessimistic case that the network reaches a
condition with average fan-out equal to 4. Primitive
send(P; o) transmits s-block o from the peer p which
invoked the primitive to the peers whose IP addresses are
in set P. In our prototype, this primitive properly avoids
overloading p when P is large. This is achieved through
decentralized dissemination. instead of sending jPj copies
of o, p sends o to a subset of the peers in P which, in turn,
keep a copy of o and forward it to different subsets of the
remaining peers in P, and so on. We assume that each s-
block is uniquely identified throughout the system, and we
denote their identifiers as id(Isup), id(infi), and id(hj). [13]
Moreover, when needed to avoid confusion, we denote the
s-blocks related to a
population D as D.Isup, D.infi, and D.hj. Finally, we assume
that each s-block carries along metadata about the
population it belongs to. These metadata are denoted as
Dm and comprise the name of the population, the schema
of the data (dimensionality, names, and ranges of
dimensions), as well as some keywords which will be
exploited to support search operations across the network.
Our proposed distribution scheme makes use of a set of
data structures named as location tables. Each location
table will be associated with a copy of an index portion and
maintain correspondences between s-blocks and sets of
peers. Specifically, the location table associated with Isup
will consist of a row for each leaf portion, plus a row for
Isup itself. Each row, in turn, will contain addresses of peers
where copies of these index portions are hosted. This way,
a peer hosting Isup will be able to contact the peers hosting
copies of the leaf portions by simply accessing its
associated location table. The row for Isup is employed to
connect the set of peers that initially host copies of Isup in a
clique, i.e., each peer hosting a copy of Isup knows the other
peers which are assigned Isup as well (indeed, the location
tables of the peers which do not belong to this clique will
not contain this row). This way, the survivability of
populations can be tightly controlled through a mechanism
that replaces a peer of the clique as soon as it exits the
system. Further details will be provided in the following.
In a location table associated with a copy of a leaf portion
infi, each row will contain the addresses of the peers
hosting copies of a sub synopsis pointed by infi .We denote
the location tables associated with index portions as table
(Isup) and table (infi). At runtime, the local copies of these
tables can be modified by the peers that host them; hence,
when needed to avoid confusion, we will denote the tables
at a peer p as p.table(Isup) and p.table(infi).In addition,
along with each sub synopsis and leaf portion, the address
of one of the peers that point to it is stored. These reverse
pointers allow for more efficient location of the peers
involved in the query evaluation
Process..

B. Disseminating Data and Index
The distribution process is started by a peer p that

is willing to publish a data population, and works as
follows. First, for each sub synopsis hj (respectively, leaf
portion infi), p invokes search(Cmin) to find Cmin peers
which can host a copy of hj (respectively, infi along with
table(infi)). Then, for each infi and sub synopsis hj
referenced by infi, location table table(infi) is filled with
the IP addresses of the peers which will host hj.
Correspondingly, each hj is augmented with a reverse
pointer to one of the peers which will host infi. A similar
process is performed to find Cmin peers which will host Isup
along with a location table, and to fill the table as well as
the reverse pointers of leaf portions. In
particular, as explained before, the location table of each
peer that will host a copy of Isup is filled with the addresses
of the other peers which will host copies of Isup. After all of
the location tables have been filled, the copies of s-blocks
along with their associated location tables are sent to the
appropriate peers. It is worth noting that distributing the
copies of the s-blocks randomly across the network well
suits the search of data in our unstructured scenario, where
search will be performed by randomly navigating across
the network. At the same time, the information provided by
the location tables allows, once an s-blocks related to a
data population D is located, to quickly locate all the other
s-blocks that are needed to answer queries over D.

IV. RESULTS AND DISCUSSION

We performed several experiments to assess the effectiveness
of our approach. Specifically, we studied the accuracy of
query estimates and the performance of our replica
management strategies in terms of generated network traffic,
data reachability, and query performances.

A. Dynamic Replication :
Our dynamic replication scheme aims at both

providing the appropriate coverage of s-blocks and
balancing the load at the peers. To this aim, besides
guaranteeing a minimum coverage for each s-block (so that
published data remain accessible over time), our
replication scheme provides adaptivity to the dynamic
query workload by creating new replicas of an s-block
each time it is queried and by removing less queried data
through suitable aging policies.

In our framework, location tables encode links among
s-blocks spread over the network. Thus, they are kept
updated w.r.t. events causing data unavailability by
deleting the addresses of the peers that no longer host these
data. Our approach is independent of the way the
unavailability of data is identified; in practice, this can be
done through periodic pinging (as in our prototype) or
notification protocols.

After the deletion of some entries in a location table,
the system detects whether the minimum coverage (Cmin
referenced copies for each s-block) is maintained .

B. Query-Based Replication
We now describe two replication strategies, called

path based (PBS) and reactive (RS), that aim at increasing
the availability of most queried data, also pursuing load
balancing when facing large and dynamic query
workloads.

P. Lalitha Kumari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2078-2083

2081

C. Range Queries
The answer of a range query is computed at the

requesting
peer after receiving the answers of all the (sub)queries
submitted to peers hosting data blocks overlapping the
query range. The cost of a sub query can be measured from
two standpoints, which take into account network-and
computation-related costs.

a. Number of hops:
This is at least 1 for a query on Isup, 2 for a sub query

on a leaf portion (as this kind of query is generated after
one hop for accessing a peer hosting Isup and requires one
more hop to reach a peer hosting the appropriate leaf
portion), and 3 for a subquery on a subsynopsis (as one
more hop is needed). These values are lower bounds, due
to peer volatility, data replacement—which yield dangling
references—and (in the case of RS) overloading— which
triggers the unloading mechanism.

b. Overall wait in queue:
 As every (sub)query SQ is enqueued at the peer p’

where it will be evaluated, it has to wait for the requests
preceding it. The overall wait in queue of SQ is the sum of
the enqueuing position of SQ at p1 and the overall wait in
queue of the (sub)query which generated SQ (if any). For
instance, if SQ is a sub query on a sub synopsis, its overall
wait in queue is the sum of: 1) its enqueuing position at p’;
2) the enqueuing position of the sub query SQ’ which
generated SQ; and 3) the enqueuing position of the query
Q which generated sq’.

Thus, an upper bound on the overall time needed to
complete the evaluation of a range query Q can be obtained
by considering the following quantities:

Nh: the maximum number of hops performed to get the
answer of a sub query of Q; and

Nq: the maximum overall wait in queue for a subquery
of Q.

The diagrams in Fig. 10 depict Nh and Nq versus query
frequency for different values of Mt(p). Fig. 1’a shows that
as query frequency increases, Nh slightly increases. This
can be explained as follows: in the case of PBS, a more
intensive query workload yields a more frequent data
replacements, which increases the likelihood of finding
dangling references, and thus, of performing more hops to
reach the needed data. In the case of RS, increasing query
frequency causes a larger number of peers to be overloaded
when they are called to evaluate queries. Thus, the
unloading mechanism is triggered, and requests are
forwarded to further peers, thus increasing Nh. The
increase in query frequency also negatively impacts on Nq
(Fig. 1’b). This effect is less evident with PBS, as
compared to RS, the higher coverage allows requests to be
distributed among a larger number of peers. As expected,
for both Nh and Nq, the behavior of RS depends on Mt(p),
as RS saturates queues before making replications: thus,
waits in queue get longer as Mt(p) increases (Fig. 1’b),
whereas the maximum number of hops for answering a sub
query decreases (Fig. 1’a) since the unloading mechanism,
yielding the forwarding of query requests to further peers,
becomes less frequent as the capacity of queues increases.
The results mentioned above are summarized in the figure
4 and 5 .(in the case Mt(p) = 4), where the cost of
explorative queries (in terms of path length per query) is
taken into account as well, thus providing an insight on the

overall performance of the query answering process in our
framework. To summarize, on the one hand, with PBS, sub
queries are more likely to be served first, and the number
of hops for getting the “slowest” answer of a sub query is
slightly lower. On the other hand, with PBS, explorative
queries require longer walks over the network to find the
needed data, and the network traffic due to the replications
needed to support these performances is much larger than
that required by RS (as seen previously), thus making RS a
much preferable choice.

CONCLUSION AND FUTURE WORK
As the importance of peer to peer network is

increasing, the data shared in network to be stored and
retrieved very efficiently .we propose this framework to
manage the multidimensional data. The data is shared
and retrieval in unstructured p2p network. The people
who are interested in sharing their data , make their
resources available for all peers in network .So that they
can access data by posing range queries .We adopt
mechanism for data summarization ,data indexing and
data distribution and replication by preserving autonomy
of peers .this experiment proves fast and accurate query
answers and ensuring the robustness .
Future work: adopting these mechanisms to other
aggregate operators rather sum. And need to devise
suitable compression, indexing techniques and data
distributing techniques for better robustness assurance in
the network.

P. Lalitha Kumari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2078-2083

2082

REFERENCES

[1] Giuseppe Massimiliano Mazzeo, and Andrea Pugliese Filippo
Furfaro, "Managing Multidimensional Historical Aggregate Data in
Unstructured P2P Networks," IEEE TRANSACTIONS ON
KNOWLEDGE AND DATA ENGINEERING, vol. 22, no. 9, pp.
1313-1330, September 2010.

[2] V. Poosala, and S. Ramaswamy S. Acharya, "Selectivity Estimation
in Spatial Databases," in ACM SIGMOD, 1999.

[3] A. Andrzejak and Z. Xu, "Scalable, Efficient Range Queries for Grid
Information Services," in Proc. Second Int’l Conf. Peer-to-Peer,
2002.

[4] M. Mihail, and A. Saberi C. Gkantsidis, "Random Walks in Peerto-
Peer Networks," in Proc. 23rd IEEE INFOCOM, 2004.

[5] S. Chaudhuri and U. Dayal, "An Overview of Data Warehousing and
OLAP Technology," Sigmod Record, vol. 26, no. 1, pp. 65-74, mar
1997.

[6] M. Demirbas and H. Ferhatosmanoglu, "Peer-to-Peer Spatial Queries
in Sensor Networks," in Third Int’l Conf. Peer-to-Peer Computing,
2003.

[7] http://www.gnutella.com, 2008.

[8] G. Das, D. Gunopulos, and V. Kalogeraki B. Arai, "Approximating
Aggregation Queries in Peer-to-Peer Networks," in Proc. 22nd Int’l
Conf. Data Eng, 2006.

[9] A. Gupta, D. Agrawal, and A. El Abbadi O.D. Sahin, "A Peer-to-
Peer Framework for Caching Range Queries," in Proc. 20th Int’l
Conf Data Eng, 2004.

[10] A. Krishnamurthy, and R.Y. Wang C. Zhang, "Skipindex:Towards a
Scalable Peer-to-Peer Index Service for High Dimensional Data,"
Princeton Univ, Technical Report TR-703-04, 2004.

[11] UCI KDD Archive. http://kdd.ics.uci.edu, 2010.

[12] (2008) http://setiathome.ssl.berkeley.edu.

[13] A. Gupta, D. Agrawal, and A. El Abbadi O.D. Sahin, "A Peer-to-
Peer Framework for Caching Range Queries," in Proc. 20th Int’l
Conf., 2004.

P. Lalitha Kumari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2078-2083

2083

