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Abstract— Peer-To-Peer (P2P) networks have become very 
popular in the last few years. Nowadays, they are the most 
widespread approach for exchanging data among large 
communities of users in the file sharing context. Efficient way 
of managing storage and retrieval of multidimensional data is 
achieved by proposed framework which ensures robust query 
evolution. This framework is based on peer to peer network, 
where large collection of Data to be stored. This data is 
divided into subparts and built up an  index on set of each 
compressed data and this data is to be distributed across  p2p 
network .This compressed data supports efficient data 
extraction of information .A replication mechanism provides 
appropriate coverage of index and   metadata by considering 
network conditions and query workload . 

Keywords- multidimensional data, indexing, compression and 
p2p network 

I.  INTRODUCTION  

 
EER-TO-PEER (P2P) networks have become very 
popular in the last few years. Nowadays, they are the 

most widespread approach for exchanging data among 
large communities of users in the file sharing context. 
In order to make participants really autonomous, they 
should be imposed no constraint on storage and [1] 
computational resources to be shared, as well as on the 
reliability of their network connection. These requirements 
make traditional distributed frameworks unsuitable and 
suggest the adoption of a solution based on an unstructured 
P2P network, where peers are neither responsible of 
coordination tasks (such as super peers, which are called 
for a certain amount of resources and reliability), nor 
imposed to host specific pieces of data (as in DHT-based 
networks).   

Our aim is devising a P2P-based framework supporting 
the analysis of multidimensional historical data. 
Specifically, our efforts will be devoted to combining the 
amenities of P2P networks and data compression to 
provide a support for the evaluation of range queries, 
possibly trading off efficiency with accuracy of answers. 
[2] The framework should enable members of an 
organization to cooperate by sharing their resources (both 
storage and computational) to host (compressed) data and 
perform aggregate queries on them, while preserving their 
autonomy. 
The management of compressed data on unstructured P2P 
Networks is an intriguing issue, but poses several research 
Challenges, which we are discuss in the following. 
 

A. Compression 
A compression technique must be devised which is able to 
create “prone-to-be-distributed” data synopses supporting 
the efficient evaluation of aggregates, possibly affected by 
tolerable error rates [3]. However, in this case, although the 
cost of disk storage is continuously and rapidly decreasing, 
it may still be difficult to find peers for which hosting 
replicas of synopses has a negligible cost, while autonomy 
is a requirement in our setting? Using traditional 
compression techniques, synopses providing reasonable 
error rates may have a non-negligible size (usually not 
under 1 percent of the size of the original data set, e.g., 1’’ 
GB from a 1’ TB data set). Although compressing the data 
certainly makes replication less resource consuming, 
[4]replicating the entire synopsis each time would require 
storage and network resources that could be saved if only 
some specific portion of the synopsis could be replicated 
[2]. We recall that replication is mandatory in the P2P 
setting, both to contrast the volatility of peers (which 
threatens data availability) and to prevent peers 
from being overloaded (in the presence of many users 
interested in a data set, if the peers hosting these data were 
too few, they would be required to process a large amount 
of queries). 
These drawbacks would be overcome if the compressed 
synopsis were subdivided into tiny sub synopses which are 
Independently replicated and disseminated on the network 
when needed. Peers would, therefore, be asked to host 
replicas of small chunks of data. This way, the autonomy 
requirement would not result in a limit on the overall size 
of the synopsis  

B. Indexing 
A better way to address this issue is to design an indexing 
mechanism that supports the efficient location of the sub 
synopses involved in the query evaluation. In the literature, 
there are several works proposing distributed indexing 
techniques, where indexes are variants of R-Trees which 
are partitioned and distributed among the nodes of the 
network. [1] According to these approaches, nodes of the 
networks are assigned groups of nodes of the R-tree, and 
maintain references to hosts which are assigned other 
nodes of the R-tree. The association between hosts and R-
tree nodes is fixed and the maintenance of the index is 
centralized. These solutions, as they are, were devised for 
relatively static scenarios, and they are not suitable for the 
dynamic scenario addressed by our proposal, where in 
order to guarantee peer autonomy, peers cannot be 
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constrained to host a certain portion of the index or to be 
always connected to the network; and [1]Peers are volatile, 
so the framework must be capable of promptly reacting to 
peer disconnections, [5] preventing dangling references in 
the index. 

C. Replication 
A replication scheme capable of maintaining appropriate 
levels of coverage w.r.t. the evolution of user interests and 
network conditions must be designed, to ensure 
accessibility and robustness. 
The main contributions of this paper and its organization 
may be summed up as follows [6]. 
 a compression technique for building an indexed 

aggregate structure over a multidimensional data 
population, prone to be distributed, and accessed 
across a P2P network ; 

 a storage model which employs additional data 
structures to support efficient and robust query 
answering over compressed data in an unstructured 
P2P network ;  and 

 a dynamic replication scheme capable of maintaining 
appropriate levels of coverage w.r.t. the evolution of 
the query workload and the network conditions with 
proposal work. 

II. COMPRESSION AND INDEXING DATA 

This section consists of three subsections that are 
partitioning, compression, and indexing.  

 
A. Partitioning. The aim of the partitioning step is to 

divide the data domain into non overlapping blocks. 
These blocks will be compressed separately, yielding 
distinct sub synopses. For each of them, a portion of 
the amount of storage space B chosen to represent the 
whole synopsis will be invested. The distribution of B 
among blocks will take into account the following 
requirements. B must be fairly distributed among 
blocks and each block must be assigned a “small” 
portion of B.  
The assignment of different amounts of storage space 
to the blocks for representing their sub synopses 
should depend on the differences in homogeneity 
among the blocks. Intuitively enough, the more 
homogeneous the data inside a block, the smaller the 
amount of information needed to effectively 
accomplish its summarization. 
 The sub synopses over the blocks are the data that 
will be hosted by peers and exchanged across the P2P 
network. As explained in Section 1, [1] building sub 
synopses with “large” size would impose a significant 
constraint on the amount of storage space which 
should be made available by each peer. [7] On the 
contrary, defining small-size sub synopses results in 
limiting the storage and computational resources 
required at each peer for storing and querying data, as 
well as reducing both the download and upload traffic 
needed for supporting data exchange. 

 

 
Fig. 1. Partitioning a 2D data population 

 
B. Compression. Clustering-based Histogram (CHIST) 

exploits a density-based clustering algorithm to 
construct a set of (possibly overlapping) blocks 
covering the nonempty portions of the data domain 
[8]. For each block (called bucket, according to 
standard histogram terminology), its boundaries as 
well as some aggregate value summarizing its data are 
stored. In our current implementation, each bucket is 
associated with the result of evaluating the sum 
aggregate operator. This way, the summary data 
suffice to estimate range sum queries. 

C. Indexing. At this step, an index is built on top of the 
sub synopses resulting from the compression step. 
This index will be exploited for locating the data 
involved in the queries across the network. [9] The 
aggregate R-tree indexing the sub synopses will be 
denoted as I.  

 
 

Fig.2. Partitioning the R-tree. 
 
D.  Partitioning the Index 

After being populated, I is partitioned in “small”-size 
portions which are prone to be distributed across the 
network.  
The reason for partitioning the index is the same as for 
limiting the amount of storage space invested for a 
single synopsis, that is, distributing small-size index 
portions across the network prevents peers from being 
overloaded in terms of upload and download traffic 
needed for supporting index replication. 
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III. PROPOSED METHOD 

 
Fig 3 . proposed method flowchart 

 
Our aim is devising a P2P-based framework 

supporting the analysis of multidimensional historical data. 
Specifically, our efforts will be devoted to combining the 
amenities of P2P networks and data compression to 
provide a support for the evaluation of range queries, 
possibly trading off efficiency with accuracy of answers. 
[1] The framework should enable members of an 
organization to cooperate by sharing their resources (both 
storage and computational) to host (compressed) data and 
perform aggregate queries on them, while preserving their 
autonomy. 

A framework with these characteristics can be 
useful in different application contexts. For instance, 
consider the case of a worldwide virtual organization with 
users interested in geographical data, as well as the case of 
a real organization 
on an enterprise network. In both cases, even users who are 
not continuously interested in performing data analysis can 

make a part of their resources available for supporting 
analysis tasks needed by others, if their own capability of 
performing local tasks is preserved. [10] This is analogous 
to the idea on which several popular applications for public 
resource computing are based. For instance, within the 
project SETI@home [39], members of a worldwide 
community offer their CPU, when it is idle, to analyze 
radio telescope readings in search of nonrandom patterns, 
such as spikes in power spectra. In order to make 
participants really autonomous, they should be imposed no 
constraint on storage and computational resources to be 
shared, as well as on the reliability of their network 
connection. These requirements make traditional 
distributed frameworks unsuitable and suggest the adoption 
of a solution based on an unstructured P2P network, where 
peers are neither responsible of coordination tasks (such as 
super peers, which are called for a certain amount of 
resources and reliability), nor imposed to host specific 
pieces of data (as in DHT-based networks). 
PEER-TO-PEER (P2P) networks have become very 
popular in 
the last few years. Nowadays, they are the most 
widespread approach for exchanging data among large 
communities of users in the file sharing context 
specifically, no P2P-based solution has imposed itself as an 
effective evolution of traditional distributed databases. 
[11]This is quite surprising, as the huge amount of 
resources provided by P2P networks (in terms of storage 
capacity, computing power, and data transmission 
capability) could effectively support data management. 
Our aim is devising a P2P-based framework supporting the 
analysis of multidimensional historical data. The 
multidimensional data is stored in peer so that it can be 
shared in the network, for that built the synopses. 
The synopsis is built in three steps  
 1. Partition   2. Compressing   and 3.Indexing. 
The aim of the partitioning step is to divide the data 
domain into non overlapping blocks. [12] These blocks 
will be compressed 
separately, yielding distinct sub synopses. 
  An index is built on top of the sub synopses resulting 
from the compression step Index and these sub synopses 
are distributed across the network .Queries can be posed 
against the data. The queries can be any explorative or 
range queries. One of the first works dealing with the 
problem of supporting range queries in a peer-to-peer 
network is where data are ordered according to Hilbert 
curves, and then, distributed among the peers.  

As seen in Section 2, the compression and indexing 
processes result in a synopsis organized into sub synopses, 
and a fragmented aggregate R-Tree over them. We now 
describe how the distribution of the synopsis and the index 
are performed. 

A. System Primitives and Data Structures . 
We assume the existence of two system primitives named 
search and send. Primitive search(N)—which is used by 
the 
framework every time it is required to find sets of peers on 
the network—returns a set of N IP addresses of  randomly 
chosen peers. In order to choose a peer randomly, it 
suffices to locate a peer by starting a random walk of 
length  rather than logf N (where N is the number of peers 
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in the network and f is the average fan-out) from the peer 
which invoked search. In fact, as shown in [1], a random 
walk of this length makes the  probability of reaching any 
peer converge to a stationary distribution, which is uniform 
if the network graph is well connected. In our prototype, 
we set the length of the random walk to 1’. This allows us 
to randomly select peers from a network of up to 41’ peers 
even in the pessimistic case that the network reaches a 
condition with average fan-out equal to 4. Primitive 
send(P; o) transmits s-block o from the peer p which 
invoked the primitive to the peers whose IP addresses are 
in set P. In our prototype, this primitive properly avoids 
overloading p when P is large. This is achieved through 
decentralized dissemination. instead of sending jPj copies 
of o, p sends o to a subset of the peers in P which, in turn, 
keep a copy of o and forward it to different subsets of the 
remaining peers in P, and so on. We assume that each s-
block is uniquely identified throughout the system, and we 
denote their identifiers as id(Isup), id(infi), and id(hj). [13] 
Moreover, when needed to avoid confusion, we denote the 
s-blocks related to a 
population D as D.Isup, D.infi, and D.hj. Finally, we assume 
that each s-block carries along metadata about the 
population it belongs to. These metadata are denoted as 
Dm and comprise the name of the population, the schema 
of the data (dimensionality, names, and ranges of 
dimensions), as well as some keywords which will be 
exploited to support search operations across the network.  
Our proposed distribution scheme makes use of a set of 
data structures named as location tables. Each location 
table will be associated with a copy of an index portion and 
maintain correspondences between s-blocks and sets of 
peers. Specifically, the location table associated with Isup 
will consist of a row for each leaf portion, plus a row for 
Isup itself. Each row, in turn, will contain addresses of peers 
where copies of these index portions are hosted. This way, 
a peer hosting Isup will be able to contact the peers hosting 
copies of the leaf portions by simply accessing its 
associated location table. The row for Isup is employed to 
connect the set of peers that initially host copies of Isup in a 
clique, i.e., each peer hosting a copy of Isup knows the other 
peers which are assigned Isup as well (indeed, the location 
tables of the peers which do not belong to this clique will 
not contain this row). This way, the survivability of 
populations can be tightly controlled through a mechanism 
that replaces a peer of the clique as soon as it exits the 
system. Further details will be provided in the following. 
In a location table associated with a copy of a leaf portion 
infi, each row will contain the addresses of the peers 
hosting copies of a sub synopsis pointed by infi .We denote 
the location tables associated with index portions as table 
(Isup) and table (infi). At runtime, the local copies of these 
tables can be modified by the peers that host them; hence, 
when needed to avoid confusion, we will denote the tables 
at a peer p as p.table(Isup) and p.table(infi).In addition, 
along with each sub synopsis and leaf portion, the address 
of one of the peers that point to it is stored. These reverse 
pointers allow for more efficient location of the peers 
involved in the query evaluation 
Process.. 
 

B. Disseminating Data and Index  
The distribution process is started by a peer p that 

is willing to publish a data population, and works as 
follows. First, for each sub synopsis hj (respectively, leaf 
portion infi), p invokes search(Cmin) to find Cmin peers 
which can host a copy of hj (respectively, infi along with 
table(infi)). Then, for each infi and sub synopsis hj 
referenced by infi, location table table(infi) is filled with 
the IP addresses of the peers which will host hj. 
Correspondingly, each hj is augmented with a reverse 
pointer to one of the peers which will host infi. A similar 
process is performed to find Cmin peers which will host Isup 
along with a location table, and to fill the table as well as 
the reverse pointers of leaf portions. In 
particular, as explained before, the location table of each 
peer that will host a copy of Isup is filled with the addresses 
of the other peers which will host copies of Isup. After all of 
the location tables have been filled, the copies of s-blocks 
along with their associated location tables are sent to the 
appropriate peers. It is worth noting that distributing the 
copies of the s-blocks randomly across the network well 
suits the search of data in our unstructured scenario, where 
search will be performed by randomly navigating across 
the network. At the same time, the information provided by 
the location tables allows, once an s-blocks related to a 
data population D is located, to quickly locate all the other 
s-blocks that are needed to answer queries over D. 

 

IV. RESULTS AND DISCUSSION 

We performed several experiments to assess the effectiveness 
of our approach. Specifically, we studied the accuracy of 
query estimates and the performance of our replica 
management strategies in terms of generated network traffic, 
data reachability, and query performances. 

A. Dynamic Replication :  
Our dynamic replication scheme aims at both 

providing the appropriate coverage of s-blocks and 
balancing the load at the peers. To this aim, besides 
guaranteeing a minimum coverage for each s-block (so that 
published data remain accessible over time), our 
replication scheme provides adaptivity to the dynamic 
query workload by creating new replicas of an s-block 
each time it is queried and by removing less queried data 
through suitable aging policies. 

In our framework, location tables encode links among 
s-blocks spread over the network. Thus, they are kept 
updated w.r.t. events causing data unavailability by 
deleting the addresses of the peers that no longer host these 
data. Our approach is independent of the way the 
unavailability of data is identified; in practice, this can be 
done through periodic pinging (as in our prototype) or 
notification protocols. 

After the deletion of some entries in a location table, 
the system detects whether the minimum coverage (Cmin 
referenced copies for each s-block) is maintained . 

B. Query-Based Replication 
We now describe two replication strategies, called 

path based (PBS) and reactive (RS), that aim at increasing 
the availability of most queried data, also pursuing load 
balancing when facing large and dynamic query 
workloads. 
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C. Range Queries 
The answer of a range query is computed at the 

requesting 
peer after receiving the answers of all the (sub)queries 
submitted to peers hosting data blocks overlapping the 
query range. The cost of a sub query can be measured from 
two standpoints, which take into account network-and 
computation-related costs.  

a. Number of hops:  
This is at least 1 for a query on Isup, 2 for a sub query 

on a leaf portion (as this kind of query is generated after 
one hop for accessing a peer hosting Isup and requires one 
more hop to reach a peer hosting the appropriate leaf 
portion), and 3 for a subquery on a subsynopsis (as one 
more hop is needed). These values are lower bounds, due 
to peer volatility, data replacement—which yield dangling 
references—and (in the case of RS) overloading— which 
triggers the unloading mechanism. 

b. Overall wait in queue: 
 As every (sub)query SQ is enqueued at the peer p’ 

where it will be evaluated, it has to wait for the requests 
preceding it. The overall wait in queue of SQ is the sum of 
the enqueuing position of SQ at p1 and the overall wait in 
queue of the (sub)query which generated SQ (if any). For 
instance, if SQ is a sub query on a sub synopsis, its overall 
wait in queue is the sum of: 1) its enqueuing position at p’; 
2) the enqueuing position of the sub query SQ’ which 
generated SQ; and 3) the enqueuing position of the query 
Q which generated sq’.  

Thus, an upper bound on the overall time needed to 
complete the evaluation of a range query Q can be obtained 
by considering the following quantities:  

Nh: the maximum number of hops performed to get the 
answer of a sub query of Q; and  

Nq: the maximum overall wait in queue for a subquery 
of Q.  

The diagrams in Fig. 10 depict Nh and Nq versus query 
frequency for different values of Mt(p). Fig. 1’a shows that 
as query frequency increases, Nh slightly increases. This 
can be explained as follows: in the case of PBS, a more 
intensive query workload yields a more frequent data 
replacements, which increases the likelihood of finding 
dangling references, and thus, of performing more hops to 
reach the needed data. In the case of RS, increasing query 
frequency causes a larger number of peers to be overloaded 
when they are called to evaluate queries. Thus, the 
unloading mechanism is triggered, and requests are 
forwarded to further peers, thus increasing Nh. The 
increase in query frequency also negatively impacts on Nq 
(Fig. 1’b). This effect is less evident with PBS, as 
compared to RS, the higher coverage allows requests to be 
distributed among a larger number of peers. As expected, 
for both Nh and Nq, the behavior of RS depends on Mt(p), 
as RS saturates queues before making replications: thus, 
waits in queue get longer as Mt(p) increases (Fig. 1’b), 
whereas the maximum number of hops for answering a sub 
query decreases (Fig. 1’a) since the unloading mechanism, 
yielding the forwarding of query requests to further peers, 
becomes less frequent as the capacity of queues increases.  
The results mentioned above are summarized in the figure 
4 and 5 .(in the case Mt(p) = 4), where the cost of 
explorative queries (in terms of path length per query) is 
taken into account as well, thus providing an insight on the 

overall performance of the query answering process in our 
framework. To summarize, on the one hand, with PBS, sub 
queries are more likely to be served first, and the number 
of hops for getting the “slowest” answer of a sub query is 
slightly lower. On the other hand, with PBS, explorative 
queries require longer walks over the network to find the 
needed data, and the network traffic due to the replications 
needed to support these performances is much larger than 
that required by RS (as seen previously), thus making RS a 
much preferable choice. 
 

 
 
 

 
 
 

CONCLUSION AND FUTURE WORK 
As the importance of peer to peer network is 

increasing, the data shared in network to be stored and 
retrieved very efficiently .we propose this framework to 
manage the multidimensional data. The data is shared 
and retrieval in unstructured p2p network. The people 
who are interested in sharing  their data ,  make their 
resources available for all peers in network .So that they 
can access data by posing range queries .We adopt 
mechanism for data summarization ,data indexing and 
data distribution and replication by preserving autonomy 
of peers .this experiment proves fast and accurate query 
answers and ensuring the robustness . 
Future work: adopting these mechanisms to other 
aggregate operators rather sum. And need to devise 
suitable compression, indexing techniques and data 
distributing techniques for better robustness assurance in 
the network. 
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